

imcascade

Welcome to the documentation for imcascade. It is a non-parametric framework for fitting astronomical images to study the morphological properties of galaxies and other objects. This is accomplished by modelling them as a series (or cascade) of Gaussians

If you are planning on using imcascade, it is strongly recommended to read the paper describing the method, available here [https://arxiv.org/abs/2109.13262]

Contents:

	Installation
	Dependencies

	Quickstart guide

	In-depth example
	Setting up

	Running imcascade

	Analyzing the results

	Advanced
	Adjusting inital values and bounds

	Fitting options

	Model averaging

	Non-circular PSF

	Changing the Likelihood function

	Changing the Priors

	API Reference
	imcascade

Installation

The source code for imcascade is stored on github [https://github.com/tbmiller-astro/imcascade]

To install imcascade simply clone the github repo and run the setup.py install script. This is the best way to make sure you are using the most up to date version.

$ cd < Directory where imcascade will be installed >
$ git clone https://github.com/tbmiller-astro/imcascade
$ cd imcascade
$ python setup.py install

We have also uploaded our code to PyPI so you can install imcascade with pip

$ pip install imcascade

Dependencies

imcascade is written purely in Python and requires the following packages, all of which can be installed using either pip install or conda install

	numpy

	scipy

	matplotlib

	astropy

	numba

	sep

	dyensty

	asdf

Optionally, you can also install jax, this speeds up the express sampling by a decent margin. It is left as optional as it cannot currently be installed easily on all systems. To install jax follow the instructions here. [https://github.com/google/jax#installation]

imcascade was developed and tested using Python 3, but it may also work in Python 2 if the required packages can be installed, but be careful that it has not been properly vetted.

Quickstart guide

imcascade is a method to fit sources in astronomical images. This is accomplished using the multi-Gaussian expansion method which models the galaxy as a mixture of Gaussians. For more details please read the in-depth example. What follows is a (very) brief introduction to the basic usage of imcascade.

In this short example we will fit an analytic, circular, Sersic profile with \(n = 1.5\), \(r_e = 6\) and total flux, \(F = 250\), we have convolved the profile with a Moffat PSF with \(\alpha = 3\) and \(\gamma = 3\) and added purely Gaussian noise.

In a hidden cell I have intialized the cutout in the 2D array sci and the pixelized PSF saved in the 2D array psf. Below I show to 2D images of each

[2]:

fig,(ax1,ax2) = plt.subplots(1,2, figsize = (12,6))

ax1.imshow(sci)
ax1.set_title('Image to be fit')

ax2.imshow(psf)
ax2.set_title('PSF image')

plt.show()

[image: _images/quickstart_3_0.png]

The initialize_fitter function is designed to take a pixelized science images (as 2D arrays or fits files) and help initalize a Fitter instance which will be used below to fit galaxies. This function is designed to help users get started using our experiences to help guide some of the decisions, which may not be applicable in all situations. For more details about these choices or other options please see the in depth example for a longer discussion about all
possibilities.

[3]:

from imcascade.fitter import initialize_fitter

fitter = initialize_fitter(sci,psf)

2022-07-12 17:48:19,219 - Fit PSF with 4 components
2022-07-12 17:48:19,220 - Widths: 1.2,1.81,5.28,2.93
2022-07-12 17:48:19,221 - Fluxes: 0.27,0.51,0.03,0.19
2022-07-12 17:48:19,231 - Using 9 components with logarithmically spaced widths to fit galaxy
2022-07-12 17:48:19,232 - 0.91, 1.52, 2.55, 4.27, 7.15, 11.97, 20.04, 33.54, 56.15
2022-07-12 17:48:19,233 - No mask was given, derriving one using sep
2022-07-12 17:48:19,246 - Using sep rms map to calculate pixel weights

This function uses the psf_fitter module to fit the given pixelized psf with a sum of Gaussians, which is required for our method. Next it estimates the effective radius and uses nine logarithmically spaced widths for the Gaussian components ranging from the PSF HWHM to \(10\times r_e\). It then derrives pixel weights and masks using sep [https://sep.readthedocs.io/en/v1.1.x/] (or the gain,exposure time and readnoise to calculate the rms). There are also options to use pre-calculated
version of these if the user has them.

Now we will run our least-squares minimization routine

[4]:

opt_param = fitter.run_ls_min()
print (opt_param)

2022-07-12 17:48:21,366 - Running least squares minimization
2022-07-12 17:48:47,347 - Finished least squares minimization

[7.60051373e+01 7.50005090e+01 6.87265676e-01 1.57715338e+00
 1.42502826e+00 -2.57490313e+00 1.53411116e+00 1.81786238e+00
 1.87217228e+00 1.63625068e+00 7.22478506e-01 -1.31211431e+00
 4.65480859e-01 -2.74388677e-05 -9.73687762e-05 1.91394558e-04]

We have printed out the parameters the desribe the best fit model. The first four are the structural parameters (x position, y position, axis ratio and position angle) then the next nine represent the fluxes or weights of the nine components (in logarithmic space) and the final three parameters for the tilted-plane sky model.

Obviously this is non-trivial to parse, which is why we will use our results module and the ImcascadeResults class to help us analyze the results

[7]:

from imcascade.results import ImcascadeResults
res_class = ImcascadeResults(fitter)
res_class.run_basic_analysis()

[7]:

{'flux': 252.58989931777214,
 'r20': 2.305274076411796,
 'r50': 5.940674533616872,
 'r80': 12.340978912963354,
 'r90': 17.43337150701717,
 'C80_20': 5.353367323755417,
 'C90_50': 2.934577783779577}

The function .run_basic_analysis() calculates some basic morphological quantities like the total flux and half-light radius. We can see that the best fit parameters match the inputs pretty well!

Another very useful function is the .make_diagnostic_fig() this makes a figure which helps inspect the fit

[8]:

fig = res_class.make_diagnostic_fig()

/mnt/c/Users/timbl/Documents/files/research/packages/imcascade/imcascade/results.py:707: RuntimeWarning: divide by zero encountered in true_divide
 rms_med = np.median(1./np.sqrt(fitter.weight))

[image: _images/quickstart_11_1.png]

This makes it easier to see if the fit went catastrophically wrong. This fit looks pretty good! Some examples of issues are if the curve-of-growth does not converge or if there are systematic issues in the residuals. To remedy this one could try using a different set of widths for the components, altering the inital guesses or making sure all the input data is correct.

Next we will explore the Posterior distribution using Dynesty. Specifically we will use the ‘express’ method which uses pre-rendered images to help speed up the run time. The code also automatically checks to see if the package jax is installed. This additionally helps to speed up the computation if availible.

[]:

post = fitter.run_dynesty(method = 'express')

Now if we re-initialize the results class, we can calculate uncertainties on the morphological values.

[9]:

res_class_w_post = ImcascadeResults(fitter)
res_class_w_post.run_basic_analysis()

[9]:

{'flux': array([249.31304659, 1.36354565, 1.27251959]),
 'r20': array([2.3907311 , 0.01458799, 0.01400204]),
 'r50': array([5.88510278, 0.03870749, 0.03532017]),
 'r80': array([12.00401554, 0.13302446, 0.1238212]),
 'r90': array([16.70281417, 0.28503741, 0.2769434]),
 'C80_20': array([5.0199006 , 0.03832022, 0.03772956]),
 'C90_50': array([2.83774779, 0.03312112, 0.03330771])}

In-depth example

In this notebook we will be going through an example of running imcascade in a realistic setting and discussing issues along the way

[1]:

#Load all neccesary packages
import numpy as np
import matplotlib.pyplot as plt
import time
import sep

import astropy.units as u
from astropy.coordinates import SkyCoord

For this example we will be running imcascade on HSC data on a MW mass galaxy at z=0.25. The data is attained in the cell below and is retrieved using the unagi python package availible here, written by Song Huang. The cell below is used to download the data and the PSF

[2]:

from unagi import hsc
from unagi.task import hsc_psf,hsc_cutout
pdr2 = hsc.Hsc(dr='pdr2',rerun = 'pdr2_wide')

#Downloaded from HSC archive, this a MW mass galaxy at z~0.25 at the sky location below
ra,dec = 219.36054754*u.deg, -0.40994375*u.deg
examp_coord = SkyCoord(ra = ra, dec = dec)
cutout = hsc_cutout(examp_coord, cutout_size=20*u.arcsec, filters='i', archive = pdr2, dr = 'pdr2', verbose=True, variance=True, mask=True, save_output = False)
psf = hsc_psf(examp_coord, filters='i', archive=pdr2, save_output = False)

#Retrieve science and variance images
img = cutout[1].data.byteswap().newbyteorder()
var = cutout[3].data.byteswap().newbyteorder()
psf_data = psf[0].data

Get table list from /home/tbm/anaconda3/envs/py3/lib/python3.8/site-packages/unagi/data/pdr2_wide/pdr2_wide_tables.fits
Retrieving cutout image in filter: i
Retrieving coadd PSF model in filter: i

Setting up

Modelling the PSF

To use imcascade while accounting for the PSF, you need to have a Gaussian decomposition of the PSF. While this is availible for some surveys, you can use the imcascade.psf_fitter module to help if you have a pixelized version.

The following function first fits the PSF profile in 1D to decide what the best widths are. Then a 2D fit is used to find the correct weights

[3]:

from imcascade.psf_fitter import PSFFitter
psf_fitter = PSFFitter(psf_data)
psf_sig,psf_a,chi2, fig = psf_fitter.fit_N(3, plot = True) # Can choose number
print (psf_sig,psf_a)
plt.show()

[1.56676938 3.15624179 7.16928138] [0.72289466 0.21654144 0.05830564]

[image: _images/example_6_1.png]

We can see that a model with three gaussians provides a pretty good fit! Generally we find 2-3 components works well for standard ground based telescopes and for more complicated PSFs, like HST WFC3, we find 4 works well. There is some incentive to use a small number of gaussians to define the PSF as it decreasese the time to render a model image. Additionally it is good to check that the sum of the weights, psf_a, is close to one. This ensures the PSF, and the fit are properly normalized

Organizing all the inputs

First let’s take a quick look at the science and variance images. We will be fitting a model to the science image and the inverse of the variance image will be used as the pixel weights when fitting

[4]:

fig, (ax1,ax2) = plt.subplots(1,2, figsize = (10,5))
ax1.imshow(img, vmin = -0.1, vmax = 0.2)
ax1.set_title('Science Image')
ax2.imshow(var,vmin = 0, vmax = 0.005)
ax2.set_title('Variance Image')
plt.show()

[image: _images/example_10_0.png]

Additionally we will be building a mask to mask contaminating sources that we don’t want affecting the fit

[5]:

Use sep to detect sources
bkg = sep.Background(img)
x_cent,y_cent = int(img.shape[0]/2.) , int(img.shape[1]/2.)
obj,seg = sep.extract(img - bkg.back(), 1.5, err = np.sqrt(var), deblend_cont = 0.005,segmentation_map = True)
seg[np.where(seg == seg[x_cent,y_cent])] = 0
mask_raw = seg > 0

#Convolve mask with a gaussian to expand it and make sure that all low-SB emission is masked
from imcascade.utils import expand_mask
mask = expand_mask(mask_raw, radius = 1.5)
mask = np.array(mask, dtype = bool)

fig, (ax1,ax2) = plt.subplots(1,2, figsize = (10,5))
ax1.imshow(mask, vmin = -0.1, vmax = 0.2)
ax1.set_title('Mask')
ax2.imshow(img*np.logical_not(mask),vmin = -0.01, vmax = 0.02)
ax2.set_title('Masked, Streched, Science Image')
plt.show()

[image: _images/example_12_0.png]

Choosing the widths for the Gaussian components

The next major decision is what set of widths to use for the Gaussian components. In general we reccomend logarithmically spaced widths. This means there are more components are smaller radii where the signal is the largest and the profile changes the quickest. asinh scaling can also work.

Next we have to choose start and end points. This should be 0.75-1 pixel (or half the PSF width) to roughly 8-10 times the effective radius. The estimate of the effective radius does not need to be perfect, for example the Kron radius for sep or Sextractor works well. This should help decide the size of the cutout too. In order to properly model the sky the cutout size should be at least 3-4 times larger then the largest width, so 30-40 times the effective radius.

Finally we have to choose the number of components. In our testing somewhere around 9-11 seems to work.

Note

These decisions are not trivial and can affect on the outcome of an imcascade fit. However reasonable changes withn the confines discussed here shouldn’t greatly affect the results. You should run tests to ensure you have chosen a reliable set of widths. If the results are very sensitive to the choice of widths, you should be wary and there may be other issues at play.

In this example we estimate the effective radius to be roughly 6 pixels so we use 9 components with logarithmically spaced widths from 1 pixels to 60 pixels (~10 x r eff) and use a cutout size of 240 pixels, roughly 40 times the effective radius.

[6]:

sig = np.logspace(np.log10(1),np.log10(60), num = 9)

We can also specify inital conditions to help make inital guesses. Here we specify the estimated half light radii and total flux. The code make some intelligent guesses on the inital conditions and the bounds but this may help ensure a quick and reliable fit. It is also possible to specify guesses and bounds for individual components, sky values etc. but this is more involved. See the user’s guide for more details

[7]:

init_dict = {'re':6., 'flux': 1000.}

Running imcascade

Least squares-minimization

To run imcascade we first need to intialize a Fitter instance with all the inputs discussed above. This class organizes all the data and contains all the methods used to fit the image

[8]:

from imcascade import Fitter
fitter = Fitter(img,sig, psf_sig, psf_a, weight = 1./var, mask = mask, init_dict = init_dict)

Now we can run least squares minimization using the command below

[9]:

min_res = fitter.run_ls_min()

2022-06-22 12:30:26,609 - Running least squares minimization
2022-06-22 12:30:53,368 - Finished least squares minimization

[10]:

print (min_res)

[1.20224028e+02 1.18955019e+02 9.11389758e-01 2.29047642e+00
 2.20703755e+00 -1.99999486e+00 2.13014635e+00 2.55804376e+00
 2.85067400e+00 -1.99999840e+00 1.44969096e+00 -1.99999947e+00
 -1.99999996e+00 7.17048936e-03 -1.24392340e-04 -2.20482392e-05]

Here we have printed out the best-fit parameters. They are, in order, \(x_0\),\(y_0\), axis ratio and position angle. Than the next 9 values are the best fit weights for the Gaussian components. Note that by default imcascade explores these in log scale. This can be changes by passing the option log_weight_scale = False when intializing. The final three parameters describe the best fit tilted-plane sky model. The can also be disabled when intializing with sky_model = False
or can be set to a flat sky model with sky_type = 'flat'.

These aren’t super easy to parase as is, which is why we use the ImcascadeResults class, described below

[11]:

from imcascade import ImcascadeResults

#Initialized using `imcascade.Fitter.fitter` instance
res_class = ImcascadeResults(fitter)
fig = res_class.make_diagnostic_fig()

/mnt/c/Users/timbl/Documents/files/research/packages/imcascade/imcascade/results.py:697: RuntimeWarning: divide by zero encountered in true_divide
 rms_med = np.median(1./np.sqrt(fitter.weight))

[image: _images/example_25_1.png]

Here we have used the make_diagnostic_fig() function to help diagnose the fit. This figures shows the (masked) observed image, best fit model, sky and residuals. Along with some facts about the fit and the intrinsic surface brightness profile and curve-of-growth. From this it is easy to diagnose if something has gone catastrophically wrong. Such as: Major source not masked properly, poor convergence on fit, or the COG not asymptoting. Here we can see the fit performs pretty well, with no
major issues!

Posterior estimation

Below we show the commands that could be used to use Bayesian techniques to explore the posterior distributions. Specifically we are using the “express” method discussed in the paper based on pre-rendered images. There are additional options when running dynesty using imcascade. Specifically we offer two choices of priors, the default is based on the results of the least-squares minimization, the other being uniform priors. We found the former runs quicker and more reliably as the priors
are not as broad. It is also possible to set you own priors, see the Advanced section for more details.

> fitter.run_dynesty(method = 'express')
> fitter.save_results('./examp_results.asdf')

This is much quicker than the traditional method. However it still took about 15 min to run on my laptop. So I have run it previously and we will load the saved data.

Analyzing the results

Since when using imcascade the paramters that are fit are the fluxes of each Gaussian component, the analysis is more involved then other parameterized models, which fit directly for the total flux, radius etc. To assist in this we have written the results module and the ImcascadeResults class. This class can be initialized multiple ways. First you can pass it a Fitter instance after running run_ls_min() and/or run_dynesty(). Alternatively it can be passed a string which
denotes the location of an ASDF file of the saved results

[12]:

#Initialized with saved file
res_class_w_post = ImcascadeResults('examp_results.asdf')

ImcascadeResults will default to using the posterior to derrive morphological parameters if it is availible.

There are a number of functions we have written to calculate various morpological quantities, please see the API reference for all functions. For a lot of applications, one can simple run run_basic_analysis() which calculates a series of common morpological quantities

[13]:

#we can also specify the percentiles used to calculate the error bars, here we use the 5th-95th percentile
res_class_w_post.run_basic_analysis(zpt = 27, errp_lo = 5, errp_hi = 95)

[13]:

{'flux': array([1392.30063682, 8.20183351, 8.24031006]),
 'mag': array([1.91406674e+01, 6.40697201e-03, 6.41482156e-03]),
 'r20': array([2.45196295, 0.01713131, 0.01708627]),
 'r50': array([6.22617613, 0.03933737, 0.04009991]),
 'r80': array([11.42789865, 0.11402678, 0.11763424]),
 'r90': array([14.71073612, 0.22744139, 0.23404145]),
 'C80_20': array([4.66096268, 0.02856234, 0.02881198]),
 'C90_50': array([2.36285489, 0.02340729, 0.02374323])}

In addition to these integrated quantities, we can calculate the surface brightness profile and curve-of-growth as a function of semi-major axis

[14]:

#Set of radii to calculate profiles at
rplot = np.linspace(0, 50, num = 100)

#Here we will calculate the posterier distribution of the surface_brightness profile
sbp_all = res_class_w_post.calc_sbp(rplot)
print (sbp_all.shape)

#Here we calculate the curve-of-growth for the posterier
cog_all = res_class_w_post.calc_cog(rplot)

(100, 29206)

If you use res_class_w_post where the postior distribution is availible it will return a 2D array containing the SBP of each sample of the posterior.

Now we plot many grey lines which show individual samples from the posterior

[15]:

fig, (ax1,ax2) = plt.subplots(1,2, figsize = (12,5))
ax1.plot(rplot, sbp_all[:,::100], 'k-', alpha = 0.05)

ax1.set_yscale('log')
ax1.set_ylim([5e-4,5e1])
ax1.set_title('Surface Brightness Profile')
ax1.set_xlabel('Radius (pixels)')
ax1.set_ylabel('Intensity')

ax2.plot(rplot,cog_all[:,::100], 'k-', alpha = 0.05)
ax2.set_title('Curve-of-growth')
ax2.set_xlabel('Radius (pixels)')
ax2.set_ylabel(r'$F(<R)$')
plt.show()

[image: _images/example_36_0.png]

If you are interested in morphological quantity that is not included, it is likely that it will be easy to calculate and code up, so please contact us!

Advanced

A guide of more advanceded and in-depth features and possibilities when runnning imcascade. Currently in progress of being written

If you have additional questions please feel free to reach out to me or raise an issue on github!

Adjusting inital values and bounds

By default imcascade attempts to make ‘’ smart ‘’ guesses for the initial
values and bounds based on the input variables. These can be easily changed by
using the init_dict or bounds_dict arguments when intializing a Fitter instance
These are both dictionaries, with matching keys, that will be discussed below, where each key should match to a
float for init_dict and 2 length tuple or list for bounds_dict.

	x0 and y0 - The central location of the object. By default this intial value is the center of the image and the bounds are +/- 10 pixels

	phi - The position angle in radians, default is \(\pi/2\) with bounds 0 to \(\pi\)

	q - The axis ratio initial value is 0.5 and bounds are 0 to 1

The inital values and boudns for the fluxes of each gaussian components can be
adjusted in several ways. The easist is the specify ‘re’ and ‘flux’ in init_dict.
This uses a polynomial fit to the exponential relationship derrived in
Hogg & Lang (2013) [https://ui.adsabs.harvard.edu/abs/2013PASP..125..719H/abstract]
to guess the inital values. This lower bounds on the flux of each component is
then \(flux/10^5\) (or 0 if using linear weight scaling) and the upper bound is the flux value.

You can also specify using the keys a_max and a_min in bounds_dict to
directly specify the upper and lower bound for the flux of every component. Note that these need to
be specified in logarithmic scale if exploring the fluxes in log scale. These will override the bounds discussed above.

Finally you can specify a_i, where i is the component of interest, in
init_dict and bounds_dict to make changes to specific components.

Again these will need to be in logarithmic scale if using log_weight_scale = True

If you are using the tilted plane sky model, you can additionally specify those parameters

	sky0 - Overal sky background, estimated as the median of the image

	sky1 - X slope of sky, estimated using the edges of the image

	sky2 - Y slope of sky, estimated using the edges of the image

Fitting options

imcascade utilized previously written routines for the optimization procedures. For the least squares
minimization we use the scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html]
routine. when using run_ls_min() the ls_kwargs input can be used to specify keywords to be passed to the least_squares function.

Similarly we implemented dynesty [https://dynesty.readthedocs.io/en/latest/] for Bayesian inference. You can pass arguments through run_dynesty()
for when defining the sampler using sampler_kwargs or running the nested sampling using run_nested_kwargs(). Both of these should be dictionaries.

We have found the default options for both these packages work fairly well however performce can likely be increased by tweaking one or more
parameters when using these packages.

Model averaging

As discussed in our paper, a powerful extension of imcascade is to run Bayesian inference on a galaxy multiple times with different
using different set of widths. These can then be combined using a Bayesian model averaging approach. For ease of use we have written a
class MultiResults in the results module. The input for this class is a list of ImcascadeResuts instances which are meant meant
to be combined. It contains some (but not all) function contained in ImcascadeResuts and calculates the joint posterier distribution of
these quantities by weighting each model (i.e. set of widths) by their relative evidence. It is important to make sure you are using results
run on the same images etc. or else it will produce non-sensical results.

Non-circular PSF

As a extension to the normal mode with a circular PSF, we have implemented the ability to specify a non-circular PSF. To do this use the
parameter PSF_shape when initializing a Fitter instance. This should be a dictionary with the keys q for the axis ratio
and phi for the position angle. Currently all components of the psf must have the same shape parameters

This increases the time to render a model as no each individual component in the observed profile must be rotated individually
as they will have different position angles. It has also not been thoroughly tested so use with caution!

Changing the Likelihood function

In our implementation of imcascade we have assumed Gaussian statistics and errors when using the usual \(\chi^2\) method. However,
In some use cases (or just in general, see Erwin (2015) [https://arxiv.org/abs/1408.1097]) it is preferable to assume Poisson statistics and
use the Cash statistic as the likelihood (Cash (1979) [https://ui.adsabs.harvard.edu/abs/1979ApJ...228..939C/abstract]). For the “express” method
the function that gets called to calculate the likelihood is log_like_express, we can simply re-assign the to a function of our choosing, using the
setattr method built in to python. First we have initialized a Fitter instance under the name fitter_cash as usual (but with the pixel weights equal to one)
and then we run the following code block

fitter_cash = initialize_fitter(img, psf, sky_model = False, err = np.ones(img.shape))

def log_like_cash(self, exp_params):
 "log likelihood using the Cash statistic"

 #Use this function to generate model
 model = self.make_express_model(exp_params)

 #Employing the Cash statistic
 return -1.*np.sum(self.weight *(model - self.img*np.log(model)))

setattr(fitter_cash, 'log_like_express', log_like_cash)

In this example we have written our on function to replace the original function. Now when we use run_dynesty it will call
our new function instead. The function self.make_express_model generates the model image and the self weight variable contains the
pixel weights (which we have set to 1.) and any mask we have supplied. self.img contains the input science cutout.

Using this example as a blueprint, it is possible to change the likelihood function to anything your heart desires! It is important
to test whatever function you have used to make sure the answer is what you expect.

Changing the Priors

API Reference

This page contains auto-generated API reference documentation 1.

	imcascade
	imcascade.fitter

	imcascade.mgm

	imcascade.psf_fitter

	imcascade.results

	imcascade.utils

	1

	Created with sphinx-autoapi [https://github.com/readthedocs/sphinx-autoapi]

imcascade

imcascade: Fitting astronomical images using a ‘cascade’ of Gaussians

Submodules

	imcascade.fitter

	imcascade.mgm

	imcascade.psf_fitter

	imcascade.results

	imcascade.utils

Package Contents

Classes

	Fitter

	A Class used fit images with MultiGaussModel

	ImcascadeResults

	A class used for collating imcascade results and performing analysis

Attributes

	__version__

	

	
imcascade.__version__ = '1.0'

	

	
class imcascade.Fitter(img, sig, psf_sig, psf_a, weight=None, mask=None, sky_model=True, sky_type='tilted-plane', render_mode='hybrid', log_weight_scale=True, verbose=True, psf_shape=None, init_dict={}, bounds_dict={}, log_file=None)

	Bases: imcascade.mgm.MultiGaussModel

A Class used fit images with MultiGaussModel

This is the main class used to fit imcascade models

	Parameters

	
	img (2D Array) – Data to be fit, it is assumed to be a cutout with the object of interest
in the center of the image

	sig (1D Array) – Widths of Gaussians to be used in MultiGaussModel

	psf_sig (1D array, None) – Width of Gaussians used to approximate psf

	psf_a (1D array, None) – Weights of Gaussians used to approximate psf
If both psf_sig and psf_a are None then will run in Non-psf mode

	weight (2D Array, optional) – Array of pixel by pixel weights to be used in fitting. Must be same
shape as ‘img’ If None, all the weights will be set to 1.

	mask (2D Array, optional) – Array with the same shape as ‘img’ denoting which, if any, pixels
to mask during fitting process. Values of ‘1’ or ‘True’ values for
the pixels to be masked. If set to ‘None’ then will not mask any
pixels. In practice, the weights of masked pixels is set to ‘0’.

	sky_model (bool, optional) – If True will incorperate a tilted plane sky model. Reccomended to be set
to True

	sky_type (str, 'tilted-plane' or 'flat') – Function used to model sky. Default is tilted plane with 3 parameters, const bkg
and slopes in each directin. ‘flat’ uses constant background model with 1 parameter.

	render_mode ('hybrid', 'erf' or 'gauss') – Option to decide how to render models. ‘erf’ analytically computes
the integral over the pixel of each profile therefore is more accurate
but more computationally intensive. ‘gauss’ assumes the center of a pixel
provides a reasonble estimate of the average flux in that pixel. ‘gauss’
is faster but far less accurate for objects which vary on O(pixel size),
so use with caution. ‘hybrid’ is the defualt, uses ‘erf’ for components with width < 5
to ensure accuracy and uses ‘gauss’ otherwise as it is accurate enough and faster. Also
assumes all flux > 5 sigma for components is 0.

	log_weight_scale (bool, optional) – Wether to treat weights as log scale, Default True

	verbose (bool, optional) – If true will log and print out errors

	psf_shape (dict, Optional) – Dictionary containg at ‘q’ and ‘phi’ that define the shape of the PSF.
Note that this slows down model rendering significantly so only
reccomended if neccesary.

	init_dict (dict, Optional) – Dictionary specifying initial guesses for least_squares fitting. The code
is desigined to make ‘intelligent’ guesses if none are provided

	bounds_dict (dict, Optional) – Dictionary specifying boundss for least_squares fitting and priors. The code
is desigined to make ‘intelligent’ guesses if none are provided

	
resid_1d(params)

	Given a set of parameters returns the 1-D flattened residuals
when compared to the Data, to be used in run_ls_min Function

	Parameters

	params (Array) – List of parameters to define model

	Returns

	resid_flatten – 1-D array of the flattened residuals

	Return type

	array

	
run_ls_min(ls_kwargs={})

	Function to run a least_squares minimization routine using pre-determined
inital guesses and bounds.

Utilizes the scipy least_squares routine (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html)

	Parameters

	ls_kwargs (dict, optional) – Optional list of arguments to be passes to least_squares routine

	Returns

	min_param – Returns a 1D array containing the optimized parameters that describe
the best fit model.

	Return type

	1D array

	
set_up_express_run(set_params=None)

	Function to set up ‘express’ run using pre-rendered images with a
fixed x0,y0, phi and q. Sets class attribute ‘express_gauss_arr’ which
is needed to run dynesty or emcee in express mode

	Parameters

	set_params (len(4) array-like, optional) – Parameters (x0,y0,q,phi) to use to per-render images. If None will
call run_ls_min() or use stored min_res to find parameters.

	Returns

	express_gauss_arr – Returns a 3-D with pre-rendered images based on input parameters

	Return type

	array (shape[0],shape[1], Ndof_gauss)

	
make_express_model(exp_params)

	Function to generate a model for a given set of paramters,
specifically using the pre-renedered model for the ‘express’ mode

	Parameters

	exo_params (Array) – List of parameters to define model. Length is Ndof_gauss + Ndof_sky
since the structural parameters (x0,y0,q, PA) are set

	Returns

	model – Model image based on input parameters

	Return type

	2D-array

	
chi_sq(params)

	Function to calculate chi_sq for a given set of paramters

	Parameters

	params (Array) – List of parameters to define model

	Returns

	chi^2 – Chi squared statistic for the given set of parameters

	Return type

	float

	
log_like(params)

	Function to calculate the log likeliehood for a given set of paramters

	Parameters

	params (Array) – List of parameters to define model

	Returns

	log likeliehood – log likeliehood for a given set of paramters, defined as -0.5*chi^2

	Return type

	float

	
ptform(u)

	Prior transformation function to be used in dynesty ‘full’ mode

	Parameters

	u (array) – array of random numbers from 0 to 1

	Returns

	x – array containing distribution of parameters from prior

	Return type

	array

	
log_like_exp(exp_params)

	Function to calculate the log likeliehood for a given set of paramters,
specifically using the pre-renedered model for the ‘express’ mode

	Parameters

	exo_params (Array) – List of parameters to define model. Length is Ndof_gauss + Ndof_sky
since the structural parameters (x0,y0,q, PA) are set

	Returns

	log likeliehood – log likeliehood for a given set of paramters, defined as -0.5*chi^2

	Return type

	float

	
ptform_exp_ls(u)

	Prior transformation function to be used in dynesty ‘express’ mode using
gaussian priors defined by the results of the least_squares minimization

	Parameters

	u (array) – array of random numbers from 0 to 1

	Returns

	x – array containing distribution of parameters from prior

	Return type

	array

	
ptform_exp_lin_cauchy(u)

	Prior transformation function to be used in dynesty ‘express’ mode using
gaussian priors defined by the results of the least_squares minimization

	Parameters

	u (array) – array of random numbers from 0 to 1

	Returns

	x – array containing distribution of parameters from prior

	Return type

	array

	
ptform_exp_unif(u)

	Prior transformation function to be used in dynesty ‘express’ mode using
unifrom priors defined by self.lb and self.ub

	Parameters

	u (array) – array of random numbers from 0 to 1

	Returns

	x – array containing distribution of parameters from prior

	Return type

	array

	
run_dynesty(method='full', sampler_kwargs={}, run_nested_kwargs={}, prior='min_results')

	Function to run dynesty to sample the posterior distribution using either the
‘full’ methods which explores all paramters, or the ‘express’ method which sets
the structural parameters.

	Parameters

	
	method (str: 'full' or 'express') – Which method to use to run dynesty

	sampler_kwargs (dict) – set of keyword arguments to pass the the dynesty DynamicNestedSampler call, see:
https://dynesty.readthedocs.io/en/latest/api.html#dynesty.dynesty.DynamicNestedSampler

	run_nested_kwargs (dict) – set of keyword arguments to pass the the dynesty run_nested call, see:
https://dynesty.readthedocs.io/en/latest/api.html#dynesty.dynamicsampler.DynamicSampler.run_nested

	prior ('min_results' or 'uniform') – Which of the two choices of priors to use. The min_results priors are Gaussian,
with centers defined by the best fit paramters and variance equal to 4 times
the variance estimated using the Hessian matrix from the run_ls_min() run.
uniform is what it sounds like, uniform priors based on the the lower and upper bounds
Defualt is min_results

	Returns

	Posterior – posterior distribution derrived. If method is ‘express’, the first 4 columns,
containg x0, y0, PA and q, are all the same and equal to values used to pre-render the images

	Return type

	Array

	
save_results(file_name)

	Function to save results after run_ls_min, run_dynesty and/or run_emcee is performed. Will be saved as an ASDF file.

	Parameters

	file_name (str) – Str defining location of where to save data

	Returns

	dict_saved – Dictionary containing all the save quantities

	Return type

	dict

	
class imcascade.ImcascadeResults(Obj, thin_posterior=1)

	A class used for collating imcascade results and performing analysis

	Parameters

	
	Obj (imcascade.fitter.Fitter class, dictionary or str) – Object which contains the data to be analyzed. Can be a Fitter object
once the run_(ls_min,dynesty, emcee) has been ran. If it is a dictionay
needs to contain, at bare minmum the variables sig, Ndof, Ndof_sky,
Ndof_gauss, log_weight_scale and either min_param or posterior.
If a string is passed it will be interreted as a file locations with
an ASDF file containing the neccesary information.

	thin_posterior (int (optional)) – Factor by which to thin the posterior distribution by. While one wants
to ensure the posterior is large enough, some of this analysis can
take time if you have >10^6 samples so this is one way to speed up
this task but use with caution.

	
calc_flux(cutoff=None)

	Calculate flux of given results

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	Flux – Total flux of best fit model

	Return type

	float or Array

	
_min_calc_rX(X, cutoff=None)

	Old and slow Function to calculate the radius containing X percent of the light

	Parameters

	
	X (float) – Fractional radius of intrest to calculate. if X < 1 will take as a fraction,
else will interpret as percent and divide X by 100. i.e. to calculate
the radius containing 20% of the light, once can either pass X = 20 or 0.2

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width used

	Returns

	r_X – The radius containg X percent of the light

	Return type

	float or Array

	
calc_rX(X, cutoff=None)

	Function to calculate the radius containing X percent of the light

	Parameters

	
	X (float) – Fractional radius of intrest to calculate. if X < 1 will take as a fraction,
else will interpret as percent and divide X by 100. i.e. to calculate
the radius containing 20% of the light, once can either pass X = 20 or 0.2

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width used

	Returns

	r_X – The radius containg X percent of the light

	Return type

	float or Array

	
calc_r90(cutoff=None)

	Wrapper function to calculate the radius containing 90% of the light

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	r_90 – The radius containg 90 percent of the light

	Return type

	float or Array

	
calc_r80(cutoff=None)

	Wrapper function to calculate the radius containing 80% of the light

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	r_80 – The radius containg 80 percent of the light

	Return type

	float or Array

	
calc_r50(cutoff=None)

	Wrapper function to calculate the radius containing 50% of the light,
or the effective radius

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	r_50 – The radius containg 50 percent of the light

	Return type

	float or Array

	
calc_r20(cutoff=None)

	Wrapper function to calculate the radius containing 20% of the light

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	r_20 – The radius containg 20 percent of the light

	Return type

	float or Array

	
calc_sbp(r, return_ind=False)

	Function to calculate surface brightness profiles for the given results

	Parameters

	
	r (float or array) – Radii (in pixels) at which to evaluate the surface brightness profile

	return_ind (bool (optional)) – If False will only return the sum of all gaussian, i.e. the best fit profile.
If true will return an array with +1 dimensions containing the profiles
of each individual gaussian component

	Returns

	SBP – Surface brightness profiles evaluated at ‘r’. If ‘return_ind = True’,
returns the profile of each individual gaussian component

	Return type

	array

	
calc_obs_sbp(r, return_ind=False)

	Function to calculate the observed surface brightness profiles, i.e. convolved with the PSF for the given results

	Parameters

	
	r (float or array) – Radii (in pixels) at which to evaluate the surface brightness profile

	return_ind (bool (optional)) – If False will only return the sum of all gaussian, i.e. the best fit profile.
If true will return an array with +1 dimensions containing the profiles
of each individual gaussian component

	Returns

	obsereved SBP – Observed surface brightness profiles evaluated at ‘r’. If ‘return_ind = True’,
returns the profile of each individual gaussian component

	Return type

	array

	
calc_cog(r, return_ind=False, norm=False, cutoff=None)

	Function to calculate curves-of-growth for the given results

	Parameters

	
	r (float or array) – Radii (in pixels) at which to evaluate the surface brightness profile

	return_ind (bool (optional)) – If False will only return the sum of all gaussian, i.e. the best fit profile.
If true will return an array with +1 dimensions containing the profiles
of each individual gaussian component

	norm (Bool (optional)) – Wether to normalize curves-of-growth to total flux, calculated using
‘self.calc_flux’. Does nothing if ‘return_ind = True’

	cutoff (Float (optional)) – Cutoff radius used in ‘self.calc_flux’, only is used if ‘norm’ is True

	Returns

	COG – curves-of-growth evaluated at ‘r’. If ‘return_ind = True’,
returns the profile of each individual gaussian component

	Return type

	array

	
calc_obs_cog(r, return_ind=False, norm=False, cutoff=None)

	Function to calculate the observed curve of growth, i.e. convolved with the PSF for the given results

	Parameters

	
	r (float or array) – Radii (in pixels) at which to evaluate the surface brightness profile

	return_ind (bool (optional)) – If False will only return the sum of all gaussian, i.e. the best fit profile.
If true will return an array with +1 dimensions containing the profiles
of each individual gaussian component

	norm (Bool (optional)) – Wether to normalize curves-of-growth to total flux, calculated using
‘self.calc_flux’. Does nothing if ‘return_ind = True’

	cutoff (Float (optional)) – Cutoff radius used in ‘self.calc_flux’, only is used if ‘norm’ is True

	Returns

	observed COG – curves-of-growth evaluated at ‘r’. If ‘return_ind = True’,
returns the profile of each individual gaussian component

	Return type

	array

	
run_basic_analysis(zpt=None, cutoff=None, errp_lo=16, errp_hi=84, save_results=False, save_file='./imcascade_results.asdf')

	Function to calculate a set of common variables and save the save the results

	Parameters

	
	zpt (float (optional)) – photometric zeropoint for the data. if not ‘None’, will also calculate
magnitude

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	errp_(lo,hi) (float (optional)) – percentiles to be used to calculate the lower and upper error bars from
the posterior distribution. Default is 16 and 84, corresponding to 1-sigma
for a guassian distribtuion

	save_results (bool (optional)) – If true will save results to file. If input is a file, will add
to given file, else will save to file denoted by ‘save_file’ (see below)

	save_file (str) – String to describe where to save file, only applicaple if the input
is not a file.

	Returns

	res_dict – Dictionary contining the results of the analysis

	Return type

	dictionary

	
calc_iso_r(I, zpt=None, pix_scale=None)

	Function to calculate the isophotal radius

	Parameters

	
	I (float) – Surface brightness target to define the isophotal radii. By defualt this shoud be in
image units unless both zpt and pix_scale are given, then I is interpreted as
mag per arcsec^2.

	zpt (float (optional)) – zeropoint magnitude of image, used to convert I to mag per arcsec^2

	pix_scale (float (optional)) – pixel scale in units of arcseconds/pixel, used to convert I to mag per arcsec^2

	Returns

	r_I – The radius, in pixel units, where the surface brightness profile matches I

	Return type

	float or Array

	
calc_petro_r(P_ratio=0.2, r_fac_min=0.8, r_fac_max=1.25)

	Function to calculate the petrosian radii of a galaxy

	Parameters

	
	P_ratio (float (optional)) – The Petrosian ratio which defines the Petrosian radii, default is 0.2

	r_fac_min (float (optional)) – lower multiplicative factor which is used to integrate flux, default 0.8

	r_fac_max (float (optional)) – higher multiplicative factor which is used to inegrate flux, default 1.25

	Returns

	r_I – The radius, in pixel units, where the surface brightness profile matches I

	Return type

	float or Array

	
make_diagnostic_fig()

	Function which generates a diagnostic figure to assess fit

	Returns

	fig – matplotlib figure object

	Return type

	matplotlib figure

imcascade.fitter

Module Contents

Classes

	Fitter

	A Class used fit images with MultiGaussModel

Functions

	initialize_fitter(im, psf[, mask, err, x0, y0, re, …])

	Function used to help Initialize Fitter instance from simple inputs

	fitter_from_ASDF(file_name[, init_dict, bounds_dict])

	Function used to initalize a fitter from a saved asdf file

Attributes

	log2pi

	

	
imcascade.fitter.log2pi

	

	
imcascade.fitter.initialize_fitter(im, psf, mask=None, err=None, x0=None, y0=None, re=None, flux=None, psf_oversamp=1, sky_model=True, log_file=None, readnoise=None, gain=None, exp_time=None, num_components=None, component_widths=None, log_weight_scale=True)

	Function used to help Initialize Fitter instance from simple inputs

	Parameters

	
	im (str or 2D Array) – The image or cutout to be fit with imcascade. If a string is given, it is
interpretted as the location of a fits file with the cutout in it’s first HDU.
Otherwise is a 2D numpy array of the data to be fit

	psf (str, 2D Array or None) – Similar to above but for the PSF. If not using a PSF, the use None

	mask (2D array (optional)) – Sources to be masked when fitting, if none is given then one will be derrived

	err (2D array (optional)) – Pixel errors used to calculate the weights when fitting. If none is given will
use readnoise, gain and exp_time if given, or default to sep derrived rms

	x0 (float (optional)) – Inital guess at x position of center, if not will assume the center of the image

	y0 (float (optional)) – Inital guess at y position of center, if not will assume the center of the image

	re (float (optional)) – Inital guess at the effective radius of the galaxy, if not given will estimate
using sep kron radius

	flux (float (optional)) – Inital guess at the flux of the galaxy, if not given will estimate
using sep flux

	psf_oversamp (float (optional)) – Oversampling of PSF given, default is 1

	sky_model (boolean (optional)) – Whether or not to model sky as tilted-plane, default is True

	log_file (str (optional)) – Location of log file

	readnoise,gain,exp_time (float,float,float (all optional)) – The read noise (in electrons), gain and exposure time of image that is
used to calculate the errors and therefore pixel weights. Only used if
err = None. If these parameters are also None, then will estimate
pixel errors using sep rms map.

	Returns

	Fitter – Returns intialized instance of imcascade.fitter.Fitter which can then
be used to fit galaxy and analyze results.

	Return type

	imcascade.fitter.Fitter

	
imcascade.fitter.fitter_from_ASDF(file_name, init_dict={}, bounds_dict={})

	Function used to initalize a fitter from a saved asdf file

This can be useful for re-running or for initializing a series
of galaxies beforehand and then transferring to somewhere else or running in
parallel

	Parameters

	
	file_name (str) – location of asdf file containing saved data. Often this is a file created
by Fitter.save_results

	init_dict (dict (optional)) – Dictionary specifying initial guesses for least_squares fitting to be passed
to Fitter instance.

	bounds_dict (dict (optional)) – Dictionary specifying bounds for least_squares fitting to be passed
to Fitter instance.

	
class imcascade.fitter.Fitter(img, sig, psf_sig, psf_a, weight=None, mask=None, sky_model=True, sky_type='tilted-plane', render_mode='hybrid', log_weight_scale=True, verbose=True, psf_shape=None, init_dict={}, bounds_dict={}, log_file=None)

	Bases: imcascade.mgm.MultiGaussModel

A Class used fit images with MultiGaussModel

This is the main class used to fit imcascade models

	Parameters

	
	img (2D Array) – Data to be fit, it is assumed to be a cutout with the object of interest
in the center of the image

	sig (1D Array) – Widths of Gaussians to be used in MultiGaussModel

	psf_sig (1D array, None) – Width of Gaussians used to approximate psf

	psf_a (1D array, None) – Weights of Gaussians used to approximate psf
If both psf_sig and psf_a are None then will run in Non-psf mode

	weight (2D Array, optional) – Array of pixel by pixel weights to be used in fitting. Must be same
shape as ‘img’ If None, all the weights will be set to 1.

	mask (2D Array, optional) – Array with the same shape as ‘img’ denoting which, if any, pixels
to mask during fitting process. Values of ‘1’ or ‘True’ values for
the pixels to be masked. If set to ‘None’ then will not mask any
pixels. In practice, the weights of masked pixels is set to ‘0’.

	sky_model (bool, optional) – If True will incorperate a tilted plane sky model. Reccomended to be set
to True

	sky_type (str, 'tilted-plane' or 'flat') – Function used to model sky. Default is tilted plane with 3 parameters, const bkg
and slopes in each directin. ‘flat’ uses constant background model with 1 parameter.

	render_mode ('hybrid', 'erf' or 'gauss') – Option to decide how to render models. ‘erf’ analytically computes
the integral over the pixel of each profile therefore is more accurate
but more computationally intensive. ‘gauss’ assumes the center of a pixel
provides a reasonble estimate of the average flux in that pixel. ‘gauss’
is faster but far less accurate for objects which vary on O(pixel size),
so use with caution. ‘hybrid’ is the defualt, uses ‘erf’ for components with width < 5
to ensure accuracy and uses ‘gauss’ otherwise as it is accurate enough and faster. Also
assumes all flux > 5 sigma for components is 0.

	log_weight_scale (bool, optional) – Wether to treat weights as log scale, Default True

	verbose (bool, optional) – If true will log and print out errors

	psf_shape (dict, Optional) – Dictionary containg at ‘q’ and ‘phi’ that define the shape of the PSF.
Note that this slows down model rendering significantly so only
reccomended if neccesary.

	init_dict (dict, Optional) – Dictionary specifying initial guesses for least_squares fitting. The code
is desigined to make ‘intelligent’ guesses if none are provided

	bounds_dict (dict, Optional) – Dictionary specifying boundss for least_squares fitting and priors. The code
is desigined to make ‘intelligent’ guesses if none are provided

	
resid_1d(params)

	Given a set of parameters returns the 1-D flattened residuals
when compared to the Data, to be used in run_ls_min Function

	Parameters

	params (Array) – List of parameters to define model

	Returns

	resid_flatten – 1-D array of the flattened residuals

	Return type

	array

	
run_ls_min(ls_kwargs={})

	Function to run a least_squares minimization routine using pre-determined
inital guesses and bounds.

Utilizes the scipy least_squares routine (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html)

	Parameters

	ls_kwargs (dict, optional) – Optional list of arguments to be passes to least_squares routine

	Returns

	min_param – Returns a 1D array containing the optimized parameters that describe
the best fit model.

	Return type

	1D array

	
set_up_express_run(set_params=None)

	Function to set up ‘express’ run using pre-rendered images with a
fixed x0,y0, phi and q. Sets class attribute ‘express_gauss_arr’ which
is needed to run dynesty or emcee in express mode

	Parameters

	set_params (len(4) array-like, optional) – Parameters (x0,y0,q,phi) to use to per-render images. If None will
call run_ls_min() or use stored min_res to find parameters.

	Returns

	express_gauss_arr – Returns a 3-D with pre-rendered images based on input parameters

	Return type

	array (shape[0],shape[1], Ndof_gauss)

	
make_express_model(exp_params)

	Function to generate a model for a given set of paramters,
specifically using the pre-renedered model for the ‘express’ mode

	Parameters

	exo_params (Array) – List of parameters to define model. Length is Ndof_gauss + Ndof_sky
since the structural parameters (x0,y0,q, PA) are set

	Returns

	model – Model image based on input parameters

	Return type

	2D-array

	
chi_sq(params)

	Function to calculate chi_sq for a given set of paramters

	Parameters

	params (Array) – List of parameters to define model

	Returns

	chi^2 – Chi squared statistic for the given set of parameters

	Return type

	float

	
log_like(params)

	Function to calculate the log likeliehood for a given set of paramters

	Parameters

	params (Array) – List of parameters to define model

	Returns

	log likeliehood – log likeliehood for a given set of paramters, defined as -0.5*chi^2

	Return type

	float

	
ptform(u)

	Prior transformation function to be used in dynesty ‘full’ mode

	Parameters

	u (array) – array of random numbers from 0 to 1

	Returns

	x – array containing distribution of parameters from prior

	Return type

	array

	
log_like_exp(exp_params)

	Function to calculate the log likeliehood for a given set of paramters,
specifically using the pre-renedered model for the ‘express’ mode

	Parameters

	exo_params (Array) – List of parameters to define model. Length is Ndof_gauss + Ndof_sky
since the structural parameters (x0,y0,q, PA) are set

	Returns

	log likeliehood – log likeliehood for a given set of paramters, defined as -0.5*chi^2

	Return type

	float

	
ptform_exp_ls(u)

	Prior transformation function to be used in dynesty ‘express’ mode using
gaussian priors defined by the results of the least_squares minimization

	Parameters

	u (array) – array of random numbers from 0 to 1

	Returns

	x – array containing distribution of parameters from prior

	Return type

	array

	
ptform_exp_lin_cauchy(u)

	Prior transformation function to be used in dynesty ‘express’ mode using
gaussian priors defined by the results of the least_squares minimization

	Parameters

	u (array) – array of random numbers from 0 to 1

	Returns

	x – array containing distribution of parameters from prior

	Return type

	array

	
ptform_exp_unif(u)

	Prior transformation function to be used in dynesty ‘express’ mode using
unifrom priors defined by self.lb and self.ub

	Parameters

	u (array) – array of random numbers from 0 to 1

	Returns

	x – array containing distribution of parameters from prior

	Return type

	array

	
run_dynesty(method='full', sampler_kwargs={}, run_nested_kwargs={}, prior='min_results')

	Function to run dynesty to sample the posterior distribution using either the
‘full’ methods which explores all paramters, or the ‘express’ method which sets
the structural parameters.

	Parameters

	
	method (str: 'full' or 'express') – Which method to use to run dynesty

	sampler_kwargs (dict) – set of keyword arguments to pass the the dynesty DynamicNestedSampler call, see:
https://dynesty.readthedocs.io/en/latest/api.html#dynesty.dynesty.DynamicNestedSampler

	run_nested_kwargs (dict) – set of keyword arguments to pass the the dynesty run_nested call, see:
https://dynesty.readthedocs.io/en/latest/api.html#dynesty.dynamicsampler.DynamicSampler.run_nested

	prior ('min_results' or 'uniform') – Which of the two choices of priors to use. The min_results priors are Gaussian,
with centers defined by the best fit paramters and variance equal to 4 times
the variance estimated using the Hessian matrix from the run_ls_min() run.
uniform is what it sounds like, uniform priors based on the the lower and upper bounds
Defualt is min_results

	Returns

	Posterior – posterior distribution derrived. If method is ‘express’, the first 4 columns,
containg x0, y0, PA and q, are all the same and equal to values used to pre-render the images

	Return type

	Array

	
save_results(file_name)

	Function to save results after run_ls_min, run_dynesty and/or run_emcee is performed. Will be saved as an ASDF file.

	Parameters

	file_name (str) – Str defining location of where to save data

	Returns

	dict_saved – Dictionary containing all the save quantities

	Return type

	dict

imcascade.mgm

Module Contents

Classes

	MultiGaussModel

	A class used to generate models based series of Gaussians

Functions

	rot_im_jax_exp(img, phi, x0, y0)

	Experimental, do not use yet!

	rot_im(img, phi, x0, y0)

	Function to rotate image around a given point

	get_ellip_conv_params(var_all, q, phi, psf_var_all, …)

	Function used to derrive the observed Gaussian Parameters for a non-circular PSF

	_erf_approx(x)

	Approximate erf function for use with numba

	_get_hybrid_stack(x0, y0, final_q, final_a, final_var, …)

	Wrapper Function used to calculate render model using the hybrid method

	
class imcascade.mgm.MultiGaussModel(shape, sig, psf_sig, psf_a, verbose=True, sky_model=True, sky_type='tilted-plane', render_mode='hybrid', log_weight_scale=True, psf_shape=None)

	A class used to generate models based series of Gaussians

	Parameters

	
	shape (2x1 array_like) – Size of model image to generate

	sig (1-D array) – Widths of Gaussians used to genrate model

	psf_sig (1-D array, None) – Width of Gaussians used to approximate psf

	psf_a (1-D array, None) – Weights of Gaussians used to approximate psf, must be same length
as ‘psf_sig’. If both psf_sig and psf_a are None then will run in
Non-psf mode

	verbose (bool, optional) – If true will print out errors

	sky_model (bool, optional) – If True will incorperate a tilted plane sky model

	render_mode ('gauss' or 'erf') – Option to decide how to render models. Default is ‘erf’ as it computes
the integral over the pixel of each profile therefore is more accurate
but more computationally intensive. ‘gauss’ assumes the center of a pixel
provides a reasonble estimate of the average flux in that pixel. ‘gauss’
is faster but far less accurate for objects with size O(pixel size),
so use with caution.

	log_weight_scale (bool, optional) – Wether to treat weights as log scale, Default True

	
get_gauss_stack(x0, y0, q_arr, a_arr, var_arr)

	Function used to calculate render model using the ‘Gauss’ method

	Parameters

	
	x0 (float) – x position of center

	y0 (float) – y position of center

	q_arr (Array) – Array of axis ratios

	a_arr – Array of Gaussian Weights

	var_arr – Array of Gassian widths, note this the variance so sig^2

	Returns

	Gauss_model – Array representing the model image, same shape as ‘shape’

	Return type

	array

	
get_erf_stack(x0, y0, final_q, final_a, final_var)

	Function used to calculate render model using the ‘erf’ method

	Parameters

	
	x0 (float) – x position of center

	y0 (float) – y position of the center

	final_q (Array) – Array of axis ratios

	final_a (Array) – Array of Gaussian Weights

	final_var (Array) – Array of Gassian widths, note this the variance so sig^2

	Returns

	erf_model – Array representing each rendered component

	Return type

	array

	
get_hybrid_stack(x0, y0, final_q, final_a, final_var)

	Function used to calculate render model using the hybrid method, which uses erf where neccesary to ensure accurate integration and gauss otherwise. Also set everything >5 sigma away to 0.

	Parameters

	
	x0 (float) – x position of center

	y0 (float) – y position of the center

	final_q (Array) – Array of axis ratios

	final_a (Array) – Array of Gaussian Weights

	final_var (Array) – Array of Gassian widths, note this the variance so sig^2

	Returns

	erf_model – Array representing each rendered component

	Return type

	3D array

	
make_model(param, return_stack=False)

	Function to generate model image based on given paramters array.
This version assumaes the gaussian weights are given in linear scale

	Parameters

	param (array) – 1-D array containing all the Parameters

	Returns

	model_image – Generated model image as the sum of all components plus sky, if included

	Return type

	2D Array

	
get_sky_model_flat(args)

	Function used to calculate flat sky model

	Parameters
	

args: (a,) (float,)

	Returns

	sky_model – Model for sky background based on given parameters, same shape as ‘shape’

	Return type

	2D Array

	
get_sky_model_tp(args)

	Function used to calculate tilted-plane sky model

	Parameters

	
	args ((a,b,c) (float,float,float)) –

	- overall normalization (a) –

	- slope in x direction (b) –

	- slope in y direction (c) –

	Returns

	sky_model – Model for sky background based on given parameters, same shape as ‘shape’

	Return type

	2D Array

	
imcascade.mgm.rot_im_jax_exp(img, phi, x0, y0)

	Experimental, do not use yet!

	
imcascade.mgm.rot_im(img, phi, x0, y0)

	Function to rotate image around a given point

	Parameters

	
	img (2D array) – Image to be rotated

	phi (Float) – angle to rotate image

	x0 (Float) – x coordinate to rotate image around

	y0 (Float) – y coordinate to rotate image around

	Returns

	rotated image

	Return type

	2D array

	
imcascade.mgm.get_ellip_conv_params(var_all, q, phi, psf_var_all, psf_q, psf_phi)

	Function used to derrive the observed Gaussian Parameters for a non-circular PSF

	Parameters

	
	var (array) – Variances of Gaussian components

	q (Float) – Axis ratio of Galaxy

	phi (Float) – PA of galaxy

	psf_var_all (array) – Variances of PSF gaussian decomposition

	psf_q (float) – Axis ratio of PSF

	psf_phi (PA of PSF) –

	Returns

	
	obs_var (array) – Array of variances for the components of the convolved gaussian model

	obs_phi (array) – Array of position angles for the components of the convolved gaussian model

	obs_q (array) – Array of axis ratios for the components of the convolved gaussian model

	
imcascade.mgm._erf_approx(x)

	Approximate erf function for use with numba

	Parameters

	x (scalar) – value

	Returns

	

	Return type

	Approximation of erf(x)

	
imcascade.mgm._get_hybrid_stack(x0, y0, final_q, final_a, final_var, im_args)

	Wrapper Function used to calculate render model using the hybrid method

	Parameters

	
	x0 (float) – x position of center

	y0 (float) – y position of the center

	final_q (Array) – Array of axis ratios

	final_a – Array of Gaussian Weights

	final_var – Array of Gassian widths, note this the variance so sig^2

	return_stack (Bool, optional) – If True returns an image for each individual gaussian

	Returns

	erf_model – Array representing the model image, same shape as ‘shape’

	Return type

	array

imcascade.psf_fitter

Module Contents

Classes

	PSFFitter

	A Class used to fit Gaussian models to a PSF image

	
class imcascade.psf_fitter.PSFFitter(psf_img, oversamp=1.0)

	A Class used to fit Gaussian models to a PSF image

	Parameters

	
	psf_img (str or 2D array) – PSF data to be fit. If a string is given will assume it is a fits file
and load the Data in the first HDU. If it is an array then will use
as the PSF image. Either way it is assumed the PSF is centered and image
is square.

	oversamp (Float, optional) – Factor by which the PSF image is oversampled. Default is 1.

	
psf_data

	pixelized PSF data to be fit

	Type

	2D array

	
intens

	1D sbp of PSF

	Type

	1D array

	
radii

	Radii corresponding to intens

	Type

	1D array

	
calc_profile()

	Calculates the 1-D PSF profile in 1 pixel steps assuming it is circular

	Returns

	
	intens (1D array) – Intensity profile.

	radius (1D array) – radii at which the intensity measuremnts are made.

	
multi_gauss_1d(r, *params, mu=0)

	Function used to evaluate a 1-D multi Gaussian model with any number
of components

	Parameters

	
	params (1D array) – List of parameters to define model. The length should be twice the
number of components in the following pattern:[a_1, sig_1, a_2,sig_2, ….]
where a_i is the weight of the i’th component and sig_i is the width of the i’th component.

	r (float, array) – Radii at which the profile is to be evaluated

	mu (float, optional) – The centre of the gaussian distribution, default is 0

	Returns

	The multi-gaussian profile evaluated at ‘r’

	Return type

	1D array

	
multi_gauss_1d_ls(*params, x_data=np.zeros(10), y_data=np.zeros(10), mu=0)

	Wrapper for multi_gauss_1d function, to be used in fitting the profile

	Parameters

	
	params (1D Array) – List of parameters to define model. The length should be twice
the number of components in the following pattern:
[a_1, sig_1, a_2,sig_2, ….]. Here a_i is the weight of the i’th
component and sig_i is the width of the i’th component.

	x_data (1-D array) – x_data to be fit, generally self.radius.

	y_data (1-D array) – y_data to be fit, genrally self.intens

	mu (float, optional) – The centre of the gaussian distribution, default is 0.

	Returns

	resid – log scale residuals between the models specified by ‘params’ and
the given y_data

	Return type

	1D array

	
fit_N(N, frac_cutoff=0.0001, plot=False)

	‘Fully’ Fit a Multi Gaussian Model with a given number of gaussians
to the psf profile. Start with 1D to find the best fit widths and then
us evaluate chi2 in 2D

	Parameters

	
	N (Int) – Number of gaussian to us in fit

	frac_cutoff (float, optional) – Fraction of max, below which to not fit. This is done to focus
on the center of the PSF and not the edges. Important because
we using the log-residuals

	plot (bool) – Whether or not to show summary plot

	Returns

	
	a_fit (1-D array) – Best fit Weights, corrected for oversamping

	sig_fit (1-D array) – Best fit widths, corrected for oversamping

	Chi2 (Float) – The overall chi squared of the fit, computed using the best fit 2D model

	
fit_1D(N, init_guess=None, frac_cutoff=0.0001)

	Fit a 1-D Multi Gaussian Model to the psf profile

	Parameters

	
	N (Int) – Number of gaussian to us in fit

	guess (Init) – Initial guess at parameters, if None will set Default based on N

	frac_cutoff (float) – Fraction of max, below which to not fit. This is done to focus
on the center of the PSF and not the edges. Important because
we using the log-residuals

	Returns

	
	a_fit (1-D array) – Best fit Weights, Not corrected for oversampling

	sig_fit (1-D array) – Best fit widths, Not corrected for oversampling

	Chi2 (Float) – The overall chi squared of the fit

	
auto_fit(N_max=5, frac_cutoff=0.0001, norm_a=True)

	Function used for automatic fitting of PSF. First using a 1-D fit to find
the smallest acceptable number of Gaussians and the corresponding widths,
then using these widths to fit in 2D and find the weights.

	Parameters

	
	N (Int) – Number of gaussian to us in fit

	frac_cutoff (float) – Fraction of max, below which to not fit. This is done to focus
on the center of the PSF and not the edges. Important because
we using the log-residuals

	norm_a (Bool) – Wheter or not to normize the resulting weight so that the sum is unity

	Returns

	
	a_fit (1-D array) – Best fit Weights

	sig_fit (1-D array) – Best fit widths

	
calc_fwhm()

	Function to estimate the FHWM of the PSF, by interpolating the measured profile

	Returns

	FWHM – Estimate of the FWHM in pixels

	Return type

	float

imcascade.results

Module Contents

Classes

	ImcascadeResults

	A class used for collating imcascade results and performing analysis

	MultiResults

	A Class to analyze and combine multiple ImcascadeResults classes using evidence weighting

Functions

	calc_flux_input(weights, sig[, cutoff])

	

	r_root_func(r, f_L, weights, sig, cutoff)

	

	
imcascade.results.calc_flux_input(weights, sig, cutoff=None)

	

	
imcascade.results.r_root_func(r, f_L, weights, sig, cutoff)

	

	
class imcascade.results.ImcascadeResults(Obj, thin_posterior=1)

	A class used for collating imcascade results and performing analysis

	Parameters

	
	Obj (imcascade.fitter.Fitter class, dictionary or str) – Object which contains the data to be analyzed. Can be a Fitter object
once the run_(ls_min,dynesty, emcee) has been ran. If it is a dictionay
needs to contain, at bare minmum the variables sig, Ndof, Ndof_sky,
Ndof_gauss, log_weight_scale and either min_param or posterior.
If a string is passed it will be interreted as a file locations with
an ASDF file containing the neccesary information.

	thin_posterior (int (optional)) – Factor by which to thin the posterior distribution by. While one wants
to ensure the posterior is large enough, some of this analysis can
take time if you have >10^6 samples so this is one way to speed up
this task but use with caution.

	
calc_flux(cutoff=None)

	Calculate flux of given results

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	Flux – Total flux of best fit model

	Return type

	float or Array

	
_min_calc_rX(X, cutoff=None)

	Old and slow Function to calculate the radius containing X percent of the light

	Parameters

	
	X (float) – Fractional radius of intrest to calculate. if X < 1 will take as a fraction,
else will interpret as percent and divide X by 100. i.e. to calculate
the radius containing 20% of the light, once can either pass X = 20 or 0.2

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width used

	Returns

	r_X – The radius containg X percent of the light

	Return type

	float or Array

	
calc_rX(X, cutoff=None)

	Function to calculate the radius containing X percent of the light

	Parameters

	
	X (float) – Fractional radius of intrest to calculate. if X < 1 will take as a fraction,
else will interpret as percent and divide X by 100. i.e. to calculate
the radius containing 20% of the light, once can either pass X = 20 or 0.2

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width used

	Returns

	r_X – The radius containg X percent of the light

	Return type

	float or Array

	
calc_r90(cutoff=None)

	Wrapper function to calculate the radius containing 90% of the light

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	r_90 – The radius containg 90 percent of the light

	Return type

	float or Array

	
calc_r80(cutoff=None)

	Wrapper function to calculate the radius containing 80% of the light

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	r_80 – The radius containg 80 percent of the light

	Return type

	float or Array

	
calc_r50(cutoff=None)

	Wrapper function to calculate the radius containing 50% of the light,
or the effective radius

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	r_50 – The radius containg 50 percent of the light

	Return type

	float or Array

	
calc_r20(cutoff=None)

	Wrapper function to calculate the radius containing 20% of the light

	Parameters

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	Returns

	r_20 – The radius containg 20 percent of the light

	Return type

	float or Array

	
calc_sbp(r, return_ind=False)

	Function to calculate surface brightness profiles for the given results

	Parameters

	
	r (float or array) – Radii (in pixels) at which to evaluate the surface brightness profile

	return_ind (bool (optional)) – If False will only return the sum of all gaussian, i.e. the best fit profile.
If true will return an array with +1 dimensions containing the profiles
of each individual gaussian component

	Returns

	SBP – Surface brightness profiles evaluated at ‘r’. If ‘return_ind = True’,
returns the profile of each individual gaussian component

	Return type

	array

	
calc_obs_sbp(r, return_ind=False)

	Function to calculate the observed surface brightness profiles, i.e. convolved with the PSF for the given results

	Parameters

	
	r (float or array) – Radii (in pixels) at which to evaluate the surface brightness profile

	return_ind (bool (optional)) – If False will only return the sum of all gaussian, i.e. the best fit profile.
If true will return an array with +1 dimensions containing the profiles
of each individual gaussian component

	Returns

	obsereved SBP – Observed surface brightness profiles evaluated at ‘r’. If ‘return_ind = True’,
returns the profile of each individual gaussian component

	Return type

	array

	
calc_cog(r, return_ind=False, norm=False, cutoff=None)

	Function to calculate curves-of-growth for the given results

	Parameters

	
	r (float or array) – Radii (in pixels) at which to evaluate the surface brightness profile

	return_ind (bool (optional)) – If False will only return the sum of all gaussian, i.e. the best fit profile.
If true will return an array with +1 dimensions containing the profiles
of each individual gaussian component

	norm (Bool (optional)) – Wether to normalize curves-of-growth to total flux, calculated using
‘self.calc_flux’. Does nothing if ‘return_ind = True’

	cutoff (Float (optional)) – Cutoff radius used in ‘self.calc_flux’, only is used if ‘norm’ is True

	Returns

	COG – curves-of-growth evaluated at ‘r’. If ‘return_ind = True’,
returns the profile of each individual gaussian component

	Return type

	array

	
calc_obs_cog(r, return_ind=False, norm=False, cutoff=None)

	Function to calculate the observed curve of growth, i.e. convolved with the PSF for the given results

	Parameters

	
	r (float or array) – Radii (in pixels) at which to evaluate the surface brightness profile

	return_ind (bool (optional)) – If False will only return the sum of all gaussian, i.e. the best fit profile.
If true will return an array with +1 dimensions containing the profiles
of each individual gaussian component

	norm (Bool (optional)) – Wether to normalize curves-of-growth to total flux, calculated using
‘self.calc_flux’. Does nothing if ‘return_ind = True’

	cutoff (Float (optional)) – Cutoff radius used in ‘self.calc_flux’, only is used if ‘norm’ is True

	Returns

	observed COG – curves-of-growth evaluated at ‘r’. If ‘return_ind = True’,
returns the profile of each individual gaussian component

	Return type

	array

	
run_basic_analysis(zpt=None, cutoff=None, errp_lo=16, errp_hi=84, save_results=False, save_file='./imcascade_results.asdf')

	Function to calculate a set of common variables and save the save the results

	Parameters

	
	zpt (float (optional)) – photometric zeropoint for the data. if not ‘None’, will also calculate
magnitude

	cutoff (float (optional)) – Radius out to which to consider the profile. Generally this should be
around the half-width of the image or the largest gaussian width use

	errp_(lo,hi) (float (optional)) – percentiles to be used to calculate the lower and upper error bars from
the posterior distribution. Default is 16 and 84, corresponding to 1-sigma
for a guassian distribtuion

	save_results (bool (optional)) – If true will save results to file. If input is a file, will add
to given file, else will save to file denoted by ‘save_file’ (see below)

	save_file (str) – String to describe where to save file, only applicaple if the input
is not a file.

	Returns

	res_dict – Dictionary contining the results of the analysis

	Return type

	dictionary

	
calc_iso_r(I, zpt=None, pix_scale=None)

	Function to calculate the isophotal radius

	Parameters

	
	I (float) – Surface brightness target to define the isophotal radii. By defualt this shoud be in
image units unless both zpt and pix_scale are given, then I is interpreted as
mag per arcsec^2.

	zpt (float (optional)) – zeropoint magnitude of image, used to convert I to mag per arcsec^2

	pix_scale (float (optional)) – pixel scale in units of arcseconds/pixel, used to convert I to mag per arcsec^2

	Returns

	r_I – The radius, in pixel units, where the surface brightness profile matches I

	Return type

	float or Array

	
calc_petro_r(P_ratio=0.2, r_fac_min=0.8, r_fac_max=1.25)

	Function to calculate the petrosian radii of a galaxy

	Parameters

	
	P_ratio (float (optional)) – The Petrosian ratio which defines the Petrosian radii, default is 0.2

	r_fac_min (float (optional)) – lower multiplicative factor which is used to integrate flux, default 0.8

	r_fac_max (float (optional)) – higher multiplicative factor which is used to inegrate flux, default 1.25

	Returns

	r_I – The radius, in pixel units, where the surface brightness profile matches I

	Return type

	float or Array

	
make_diagnostic_fig()

	Function which generates a diagnostic figure to assess fit

	Returns

	fig – matplotlib figure object

	Return type

	matplotlib figure

	
class imcascade.results.MultiResults(lofr)

	A Class to analyze and combine multiple ImcascadeResults classes using evidence weighting

	
calc_cog(r, num=1000)

	

	
calc_obs_cog(r, num=1000)

	

	
calc_sbp(r, num=1000)

	

	
calc_obs_sbp(r, num=1000)

	

	
calc_flux(cutoff=None, num=1000)

	

	
calc_rX(X, cutoff=None, num=1000)

	

imcascade.utils

Module Contents

Functions

	guess_weights(sig, re, flux)

	Method to guess the weights of gaussian componenets given an re and flux.

	expand_mask(mask[, radius, threshold])

	Expands mask by convolving it with a Gaussians

	asinh_scale(start, end, num)

	Simple wrapper to generate list of numbers equally spaced in asinh space

	log_scale(start, end, num)

	Simple wrapper to generate list of numbers equally spaced in logspace

	dict_add(dict_use, key, obj)

	Simple wrapper to add obj to dictionary if it doesn’t exist. Used in fitter.Fitter when defining defaults

	get_med_errors(arr[, lo, hi])

	Simple function to find percentiles from distribution

	b(n)

	Simple function to approximate b(n) when evaluating a Sersic profile

	sersic(r, n, re, Ltot)

	Calculates the surface brightness profile for a Sersic profile

	min_diff_array(arr)

	Function used to calculate the minimum difference between any two elements

Attributes

	vars_to_use

	

	
imcascade.utils.vars_to_use = ['img', 'weight', 'mask', 'sig', 'Ndof', 'Ndof_sky', 'Ndof_gauss', 'has_psf', 'psf_a',...

	

	
imcascade.utils.guess_weights(sig, re, flux)

	Method to guess the weights of gaussian componenets given an re and flux.
Based on a polynomial fit to the exp fits of Hogg & Lang 2013

	Parameters

	
	sig (array) – List of gaussian widths for imcascade model

	re (Float) – Estimate of effective radius

	flux – Estimate of flux

	Returns

	a_i – Inital estimate of weights based on re and flux

	Return type

	Array

	
imcascade.utils.expand_mask(mask, radius=5, threshold=0.001)

	Expands mask by convolving it with a Gaussians

	Parameters

	
	Mask (2D array) – inital mask with masked pixels equal to 1

	radius (Float) – width of gaussian used to convolve mask. default 5, set larger for more aggresive masking

	threshold (Float) – threshold to generate new mask from convolved mask. Default is 1e-3, set lower for more aggresive mask

	Returns

	new_mask – New, expanded mask

	Return type

	2D-Array

	
imcascade.utils.asinh_scale(start, end, num)

	Simple wrapper to generate list of numbers equally spaced in asinh space

	Parameters

	
	start (floar) – Inital number

	end (Float) – Final number

	num (Float) – Number of number in the list

	Returns

	list – List of number spanning start to end, equally space in asinh space

	Return type

	1d array

	
imcascade.utils.log_scale(start, end, num)

	Simple wrapper to generate list of numbers equally spaced in logspace

	Parameters

	
	start (floar) – Inital number

	end (Float) – Final number

	num (Float) – Number of number in the list

	Returns

	list – List of number spanning start to end, equally space in log space

	Return type

	1d array

	
imcascade.utils.dict_add(dict_use, key, obj)

	Simple wrapper to add obj to dictionary if it doesn’t exist. Used in fitter.Fitter when defining defaults

	Parameters

	
	dict_use (Dictionary) – dictionary to be, possibly, updated

	key (str) – key to update, only updated if the key doesn’t exist in dict_use already

	obj (Object) – Object to be added to dict_use under key

	Returns

	dict_add – updated dictionary

	Return type

	Dictionary

	
imcascade.utils.get_med_errors(arr, lo=16, hi=84)

	Simple function to find percentiles from distribution

	Parameters

	
	arr (array) – Array containing in the distribution of intrest

	lo (float (optional)) – percentile to define lower error bar, Default 16

	hi (float (optional)) – percentile to define upper error bar, Default 84

	Returns

	(med,err_lo,err_hi) – Array containg the median and errorbars of the distiribution

	Return type

	array

	
imcascade.utils.b(n)

	Simple function to approximate b(n) when evaluating a Sersic profile
following Capaccioli (1989). Valid for 0.5 < n < 10

	Parameters

	n (float or array) – Sersic index

	Returns

	b(n) – Approximation to Gamma(2n) = 2 gamma(2n,b(n))

	Return type

	float or array

	
imcascade.utils.sersic(r, n, re, Ltot)

	Calculates the surface brightness profile for a Sersic profile

	Parameters

	
	r (array) – Radii at which to evaluate surface brightness profile

	n (float) – Sersic index of profile

	re (float) – Half-light radius of profile

	Ltot (float) – Total flux of Sersic profile

	Returns

	Surface brightness profile evaluate along the semi-major axis at ‘r’

	Return type

	float or array

	
imcascade.utils.min_diff_array(arr)

	Function used to calculate the minimum difference between any two elements
in a given array_like
:param arr: Array to be searched
:type arr: 1-D array

	Returns

	min_diff – The minimum difference between any two elements of the given array

	Return type

	Float

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 imcascade	

 	
 	
 imcascade.fitter	

 	
 	
 imcascade.mgm	

 	
 	
 imcascade.psf_fitter	

 	
 	
 imcascade.results	

 	
 	
 imcascade.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | V

_

 	
 	__version__ (in module imcascade)

 	_erf_approx() (in module imcascade.mgm)

 	
 	_get_hybrid_stack() (in module imcascade.mgm)

 	_min_calc_rX() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

A

 	
 	asinh_scale() (in module imcascade.utils)

 	
 	auto_fit() (imcascade.psf_fitter.PSFFitter method)

B

 	
 	b() (in module imcascade.utils)

C

 	
 	calc_cog() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	(imcascade.results.MultiResults method)

 	calc_flux() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	(imcascade.results.MultiResults method)

 	calc_flux_input() (in module imcascade.results)

 	calc_fwhm() (imcascade.psf_fitter.PSFFitter method)

 	calc_iso_r() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	calc_obs_cog() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	(imcascade.results.MultiResults method)

 	calc_obs_sbp() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	(imcascade.results.MultiResults method)

 	calc_petro_r() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	
 	calc_profile() (imcascade.psf_fitter.PSFFitter method)

 	calc_r20() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	calc_r50() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	calc_r80() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	calc_r90() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	calc_rX() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	(imcascade.results.MultiResults method)

 	calc_sbp() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	(imcascade.results.MultiResults method)

 	chi_sq() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

D

 	
 	dict_add() (in module imcascade.utils)

E

 	
 	expand_mask() (in module imcascade.utils)

F

 	
 	fit_1D() (imcascade.psf_fitter.PSFFitter method)

 	fit_N() (imcascade.psf_fitter.PSFFitter method)

 	
 	Fitter (class in imcascade)

 	(class in imcascade.fitter)

 	fitter_from_ASDF() (in module imcascade.fitter)

G

 	
 	get_ellip_conv_params() (in module imcascade.mgm)

 	get_erf_stack() (imcascade.mgm.MultiGaussModel method)

 	get_gauss_stack() (imcascade.mgm.MultiGaussModel method)

 	get_hybrid_stack() (imcascade.mgm.MultiGaussModel method)

 	
 	get_med_errors() (in module imcascade.utils)

 	get_sky_model_flat() (imcascade.mgm.MultiGaussModel method)

 	get_sky_model_tp() (imcascade.mgm.MultiGaussModel method)

 	guess_weights() (in module imcascade.utils)

I

 	
 	
 imcascade

 	module

 	
 imcascade.fitter

 	module

 	
 imcascade.mgm

 	module

 	
 imcascade.psf_fitter

 	module

 	
 	
 imcascade.results

 	module

 	
 imcascade.utils

 	module

 	ImcascadeResults (class in imcascade)

 	(class in imcascade.results)

 	initialize_fitter() (in module imcascade.fitter)

 	intens (imcascade.psf_fitter.PSFFitter attribute)

L

 	
 	log2pi (in module imcascade.fitter)

 	log_like() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

 	
 	log_like_exp() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

 	log_scale() (in module imcascade.utils)

M

 	
 	make_diagnostic_fig() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	make_express_model() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

 	make_model() (imcascade.mgm.MultiGaussModel method)

 	min_diff_array() (in module imcascade.utils)

 	
 module

 	imcascade

 	imcascade.fitter

 	imcascade.mgm

 	imcascade.psf_fitter

 	imcascade.results

 	imcascade.utils

 	
 	multi_gauss_1d() (imcascade.psf_fitter.PSFFitter method)

 	multi_gauss_1d_ls() (imcascade.psf_fitter.PSFFitter method)

 	MultiGaussModel (class in imcascade.mgm)

 	MultiResults (class in imcascade.results)

P

 	
 	psf_data (imcascade.psf_fitter.PSFFitter attribute)

 	PSFFitter (class in imcascade.psf_fitter)

 	ptform() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

 	ptform_exp_lin_cauchy() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

 	
 	ptform_exp_ls() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

 	ptform_exp_unif() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

R

 	
 	r_root_func() (in module imcascade.results)

 	radii (imcascade.psf_fitter.PSFFitter attribute)

 	resid_1d() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

 	rot_im() (in module imcascade.mgm)

 	rot_im_jax_exp() (in module imcascade.mgm)

 	
 	run_basic_analysis() (imcascade.ImcascadeResults method)

 	(imcascade.results.ImcascadeResults method)

 	run_dynesty() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

 	run_ls_min() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

S

 	
 	save_results() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

 	
 	sersic() (in module imcascade.utils)

 	set_up_express_run() (imcascade.Fitter method)

 	(imcascade.fitter.Fitter method)

V

 	
 	vars_to_use (in module imcascade.utils)

Quickstart Guide

imcascade is a method to fit sources in astronomical images. This is accomplished by modelling the objects using multi-Gaussian expansion which models the galaxy as a mixture of Gaussians. For full details please read our paper here: here [https://arxiv.org/abs/2109.13262].

What follows is a (very) brief introduction to the basic usage of imcascade, please read the users guide for a more in depth discussion

The bare minimum needed to run imcascade is

	img: A numpy array representing a cutout of an image with the object of interest at the center

	sig: The widths of the Gaussian components used to model the galaxy. Generally these are logaritmically spaced from ~1 pixel to ~10 estimated effective radius of the object

The following inputs are technically optional but are very often used when running imcascade in a realistic setting,

	psf_sig and psf_a: the widths and fluxes for a Gaussian decomposition of the point spread function

	weight: A numpy array containing the pixel by pixel weights used in the fitting, usually the inverse variance.

	mask: A numpy array containing the pixel mask, i.e. neighbouring sources that should not be included.

Once these inputs have been assembled a Fitter instance can be initialized. This class contains methods to run chi squared minimization and Bayesian inference,

from imcascade import Fitter

fitter = Fitter(img,sig,psf_sig,psf_a, weight = weight, mask = mask)

fitter.run_ls_min() #To run chi^2 minmization

or

fitter.run_dynesty(method = 'express') #For Bayesian inference

fitter.save_results('./my_imcascade_results.asdf')

The analysis of results from imcascade is non-trivial as the free parameters are the fluxes of each Gaussian component, which do not easily map to common morphological quantities of interest. Therefore we have included the ImcascadeResults class to help with the analysis

from imcascade import ImcascadeResults

res = ImcascadeResults(fitter)
#Can give Fitter instance to initialize after calling run_ls_min or run_dynesty

Alternatively can initialize using a saved file
>>> res = ImcascadeResults('./my_imcascade_results.asdf')

basic_quantities = res.run_basic_analysis()
#calculates total flux, effective radius and other commonly used quantities

Additionally ImcascadeResuts contaains other methods to caluclate the recovered surface brightness profile, curve-of-growth and others

And with that you have fit your first object using imcascade!! Please see the In depth example page to see a much more detailed example or the advanced guide for a discussion of more advanceded features.

 _images/example_6_1.png
log (Intensity)

— 1D profile
— Best fit model

Radius (pix)

Residual- (data-model)/model

04

02

00

_images/quickstart_11_1.png
10

100

107

102

107

Image

Intr. SBP

Best Fit Obs. Galaxy Model

Intr. Curve-of-growth

<= Med RMS/pix
Med. [Sky Model]

0

20

150

100

B

]
radius (pixels)

]
radius (pixels)

Best Fit Sky Model Residuals.

Flux = 252.59 # of components
r_eff = 5.94 pixels PSF? - True

q = 0.69 Sky? - True

PA =1.58 rad

_images/example_25_1.png
100

100
10
102
10

10

Image

Intr. SBP

Best Fit Obs. Galaxy Model

Intr. Curve-of-growth

<= Med RMS/pix
Med. [Sky Model]

200
000
a0
@0
0
200

R IE]
radius (pixels)

)
radius (pixels)

@

Best Fit Sky Model

Flux = 1394.72
r_eff = 6.24 pixels
0.91
29 rad

Residuals

of components
PSF? - True

Sky? - True

9

_images/example_36_0.png
Intensity

10

100

107

102

107

Surface Brightness Profile

Curve-of-growth

Fi<R)

1400

1200

1000

a0

&0

00

20

o

% Ed
Radius (pixels)

o

% Ed
Radius (pixels)

_static/file.png

_images/quickstart_3_0.png
Image to be fit

00 120 140

_static/minus.png

_images/example_10_0.png
science Image Variance Image

_images/example_12_0.png
Masked, Streched, Science Image

150

nav.xhtml

 Table of Contents

 		
 imcascade

 		
 Installation

 		
 Dependencies

 		
 Quickstart guide

 		
 In-depth example

 		
 Setting up

 		
 Modelling the PSF

 		
 Organizing all the inputs

 		
 Choosing the widths for the Gaussian components

 		
 Running imcascade

 		
 Least squares-minimization

 		
 Posterior estimation

 		
 Analyzing the results

 		
 Advanced

 		
 Adjusting inital values and bounds

 		
 Fitting options

 		
 Model averaging

 		
 Non-circular PSF

 		
 Changing the Likelihood function

 		
 Changing the Priors

 		
 API Reference

 		
 imcascade

 		
 Submodules

 		
 Package Contents

_static/plus.png

